
Copyright © 1978 American Telephone and Telegraph Company
The Bell System technical journal

Vol. 57, No. 6, July-Augusl 1978

Printed in U.S.A.

UNIX Time-Sharing System:

UNIX Implementation

By K. THOMPSON
(Manuscript received December 5, 1977)

This paper describes in high-level terms the implementation of the

resident UNIX* kernel. This discussion is broken into three parts. The

first part describes how the UNIX system views processes, users, and pro-

grams. The second part describes the I/O system. The last part

describes the UNIX file system.

I. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and

about 1,000 lines of assembly code. The assembly code can be

further broken down into 200 lines included for the sake of

efficiency (they could have been written in C) and 800 lines to per-

form hardware functions not possible in C.

This code represents 5 to 10 percent of what has been lumped

into the broad expression "the UNIX operating system." The kernel

is the only UNIX code that cannot be substituted by a user to his own

liking. For this reason, the kernel should make as few real decisions

as possible. This does not mean to allow the user a million options

to do the same thing. Rather, it means to allow only one way to do

one thing, but have that way be the least-common divisor of all the

options that might have been provided.

What is or is not implemented in the kernel represents both a

UNIX is a trademark of Bell Laboratories.

1931



great responsibility and a great power. It is a soap-box platform on

"the way things should be done." Even so, if "the way" is too radi-

cal, no one will follow it. Every important decision was weighed

carefully. Throughout, simplicity has been substituted for efficiency.

Complex algorithms are used only if their complexity can be local-

ized.

II. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment

called a user process. When a system function is required, the user

process calls the system as a subroutine. At some point in this call,

there is a distinct switch of environments. After this, the process is

said to be a system process. In the normal definition of processes,

the user and system processes are different phases of the same pro-

cess (they never execute simultaneously). For protection, each sys-

tem process has its own stack.

The user process may execute from a read-only text segment,

which is shared by all processes executing the same code. There is

no functional benefit from shared-text segments. An efficiency

benefit comes from the fact that there is no need to swap read-only

segments out because the original copy on secondary memory is still

current. This is a great benefit to interactive programs that tend to

be swapped while waiting for terminal input. Furthermore, if two

processes are executing simultaneously from the same copy of a

read-only segment, only one copy needs to reside in primary

memory. This is a secondary effect, because simultaneous execu-

tion of a program is not common. It is ironic that this effect, which

reduces the use of primary memory, only comes into play when
there is an overabundance of primary memory, that is, when there is

enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained

from the text table. A text table entry holds the location of the text

segment on secondary memory. If the segment is loaded, that table

also holds the primary memory location and the count of the

number of processes sharing this entry. When this count is reduced

to zero, the entry is freed along with any primary and secondary

memory holding the segment. When a process first executes a

shared-text segment, a text table entry is allocated and the segment

is loaded onto secondary memory. If a second process executes a

text segment that is already allocated, the entry reference count is

simply incremented.

1932 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



A user process has some strictly private read-write data contained

in its data segment. As far as possible, the system does not use the

user's data segment to hold system data. In particular, there are no
I/O buffers in the user address space.

The user data segment has two growing boundaries. One,

increased automatically by the system as a result of memory faults,

is used for a stack. The second boundary is only grown (or shrunk)

by explicit requests. The contents of newly allocated primary

memory is initialized to zero.

Also associated and swapped with a process is a small fixed-size

system data segment. This segment contains all the data about the

process that the system needs only when the process is active.

Examples of the kind of data contained in the system data segment

are: saved central processor registers, open file descriptors, account-

ing information, scratch data area, and the stack for the system

phase of the process. The system data segment is not addressable

from the user process and is therefore protected.

Last, there is a process table with one entry per process. This

entry contains all the data needed by the system when the process is

not active. Examples are the process's name, the location of the

other segments, and scheduling information. The process table

entry is allocated when the process is created, and freed when the

process terminates. This process entry is always directly addressable

by the kernel.

Figure 1 shows the relationships between the various process con-

trol data. In a sense, the process table is the definition of all

processes, because all the data associated with a process may be

accessed starting from the process table entry.

2.1 Process creation and program execution

Processes are created by the system primitive fork. The newly

created process (child) is a copy of the original process (parent).

There is no detectable sharing of primary memory between the two

processes. (Of course, if the parent process was executing from a

read-only text segment, the child will share the text segment.)

Copies of all writable data segments are made for the child process.

Files that were open before the fork are truly shared after the fork.

The processes are informed as to their part in the relationship to

allow them to select their own (usually non-identical) destiny. The
parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the

UNIX IMPLEMENTATION 1933



PROCESS
TABLE
ENTRY

PROCESS TABLE TEXT TABLE

TEXT
TABLE
ENTRY

RESIDENT

A

USER
ADDRESS
SPACE

SYSTEM
DATA
SEGMENT

USER
DATA
SEGMENT

SWAPPABLE

USER
TEXT
SEGMENT

Fig. 1 — Process control data structure.

current text and data segments of the process for new text and data

segments specified in the file. The old segments are lost. Doing an

exec does not change processes; the process that did the exec per-

sists, but after the exec it is executing a different program. Files

that were open before the exec remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay

itself with another program, say the second pass, then it simply

execs the second program. This is analogous to a "goto." If a pro-

gram wishes to regain control after execing a second program, it

should fork a child process, have the child exec the second pro-

gram, and have the parent wait for the child. This is analogous to a

"call." Breaking up the call into a binding followed by a transfer is

similar to the subroutine linkage in SL-5. 1

2.2 Swapping

The major data associated with a process (the user data segment,

the system data segment, and the text segment) are swapped to and

from secondary memory, as needed. The user data segment and the

system data segment are kept in contiguous primary memory to

reduce swapping latency. (When low-latency devices, such as bub-

bles, ccds, or scatter/gather devices, are used, this decision will

have to be reconsidered.) Allocation of both primary and secondary

1934 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



memory is performed by the same simple first-fit algorithm. When
a process grows, a new piece of primary memory is allocated. The

contents of the old memory is copied to the new memory. The old

memory is freed and the tables are updated. If there is not enough

primary memory, secondary memory is allocated instead. The pro-

cess is swapped out onto the secondary memory, ready to be

swapped in with its new size.

One separate process in the kernel, the swapping process, simply

swaps the other processes in and out of primary memory. It exam-

ines the process table looking for a process that is swapped out and

is ready to run. It allocates primary memory for that process and

reads its segments into primary memory, where that process com-

petes for the central processor with other loaded processes. If no

primary memory is available, the swapping process makes memory
available by examining the process table for processes that can be

swapped out. It selects a process to swap out, writes it to secondary

memory, frees the primary memory, and then goes back to look for

a process to swap in.

Thus there are two specific algorithms to the swapping process.

Which of the possibly many processes that are swapped out is to be

swapped in? This is decided by secondary storage residence time.

The one with the longest time out is swapped in first. There is a

slight penalty for larger processes. Which of the possibly many
processes that are loaded is to be swapped out? Processes that are

waiting for slow events (i.e., not currently running or waiting for

disk I/O) are picked first, by age in primary memory, again with size

penalties. The other processes are examined by the same age algo-

rithm, but are not taken out unless they are at least of some age.

This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system.

With limited primary memory, these algorithms cause total swap-

ping. This is not bad in itself, because the swapping does not impact

the execution of the resident processes. However, if the swapping

device must also be used for file storage, the swapping traffic

severely impacts the file system traffic. It is exactly these small sys-

tems that tend to double usage of limited disk resources.

2.3 Synchronization and scheduling

Process synchronization is accomplished by having processes wait

for events. Events are represented by arbitrary integers. By

UNIX IMPLEMENTATION 1935



convention, events are chosen to be addresses of tables associated

with those events. For example, a process that is waiting for any of

its children to terminate will wait for an event that is the address of

its own process table entry. When a process terminates, it signals

the event represented by its parent's process table entry. Signaling

an event on which no process is waiting has no effect. Similarly,

signaling an event on which many processes are waiting will wake all

of them up. This differs considerably from Dijkstra's P and V syn-

chronization operations, 2 in that no memory is associated with

events. Thus there need be no allocation of events prior to their

use. Events exist simply by being used.

On the negative side, because there is no memory associated with

events, no notion of "how much" can be signaled via the event

mechanism. For example, processes that want memory might wait

on an event associated with memory allocation. When any amount
of memory becomes available, the event would be signaled. All the

competing processes would then wake up to fight over the new
memory. (In reality, the swapping process is the only process that

waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for

that event and the time that process enters the wait state, then the

process will wait on an event that has already happened (and may
never happen again). This race condition happens because there is

no memory associated with the event to indicate that the event has

occurred; the only action of an event is to change a set of processes

from wait state to run state. This problem is relieved largely by the

fact that process switching can only occur in the kernel by explicit

calls to the event-wait mechanism. If the event in question is sig-

naled by another process, then there is no problem. But if the event

is signaled by a hardware interrupt, then special care must be taken.

These synchronization races pose the biggest problem when UNIX is

adapted to multiple-processor configurations. 3

The event-wait code in the kernel is like a co-routine linkage. At
any time, all but one of the processes has called event-wait. The
remaining process is the one currently executing. When it calls

event-wait, a process whose event has been signaled is selected and

that process returns from its call to event-wait.

Which of the runable processes is to run next? Associated with

each process is a priority. The priority of a system process is

assigned by the code issuing the wait on an event. This is roughly

equivalent to the response that one would expect on such an event.

Disk events have high priority, teletype events are low, and time-

1936 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



of-day events are very low. (From observation, the difference in

system process priorities has little or no performance impact.) All

user-process priorities are lower than the lowest system priority.

User-process priorities are assigned by an algorithm based on the

recent ratio of the amount of compute time to real time consumed

by the process. A process that has used a lot of compute time in the

last real-time unit is assigned a low user priority. Because interac-

tive processes are characterized by low ratios of compute to real

time, interactive response is maintained without any special arrange-

ments.

The scheduling algorithm simply picks the process with the

highest priority, thus picking all system processes first and user

processes second. The compute-to-real-time ratio is updated every

second. Thus, all other things being equal, looping user processes

will be scheduled round-robin with a 1-second quantum. A high-

priority process waking up will preempt a running, low-priority pro-

cess. The scheduling algorithm has a very desirable negative feed-

back character. If a process uses its high priority to hog the com-

puter, its priority will drop. At the same time, if a low-priority pro-

cess is ignored for a long time, its priority will rise.

III. I/O SYSTEM

The I/O system is broken into two completely separate systems:

the block I/O system and the character I/O system. In retrospect,

the names should have been "structured I/O" and "unstructured

I/O," respectively; while the term "block I/O" has some meaning,

"character I/O" is a complete misnomer.

Devices are characterized by a major device number, a minor

device number, and a class (block or character). For each class,

there is an array of entry points into the device drivers. The major

device number is used to index the array when calling the code for a

particular device driver. The minor device number is passed to the

device driver as an argument. The minor number has no

significance other than that attributed to it by the driver. Usually,

the driver uses the minor number to access one of several identical

physical devices.

The use of the array of entry points (configuration table) as the

only connection between the system code and the device drivers is

very important. Early versions of the system had a much less for-

mal connection with the drivers, so that it was extremely hard to

UNIX IMPLEMENTATION 1937



handcraft differently configured systems. Now it is possible to

create new device drivers in an average of a few hours. The
configuration table in most cases is created automatically by a pro-

gram that reads the system's parts list.

3.1 Block I/O system

The model block I/O device consists of randomly addressed,

secondary memory blocks of 512 bytes each. The blocks are uni-

formly addressed 0, 1, ... up to the size of the device. The block

device driver has the job of emulating this model on a physical

device.

The block I/O devices are accessed through a layer of buffering

software. The system maintains a list of buffers (typically between

10 and 70) each assigned a device name and a device address. This

buffer pool constitutes a data cache for the block devices. On a read

request, the cache is searched for the desired block. If the block is

found, the data are made available to the requester without any phy-

sical I/O. If the block is not in the cache, the least recently used

block in the cache is renamed, the correct device driver is called to

fill up the renamed buffer, and then the data are made available.

Write requests are handled in an analogous manner. The correct

buffer is found and relabeled if necessary. The write is performed

simply by marking the buffer as "dirty." The physical I/O is then

deferred until the buffer is renamed.

The benefits in reduction of physical I/O of this scheme are sub-

stantial, especially considering the file system implementation.

There are, however, some drawbacks. The asynchronous nature of

the algorithm makes error reporting and meaningful user error han-

dling almost impossible. The cavalier approach to I/O error han-

dling in the UNIX system is partly due to the asynchronous nature of

the block I/O system. A second problem is in the delayed writes. If

the system stops unexpectedly, it is almost certain that there is a lot

of logically complete, but physically incomplete, I/O in the buffers.

There is a system primitive to flush all outstanding I/O activity from

the buffers. Periodic use of this primitive helps, but does not solve,

the problem. Finally, the associativity in the buffers can alter the

physical I/O sequence from that of the logical I/O sequence. This

means that there are times when data structures on disk are incon-

sistent, even though the software is careful to perform I/O in the

correct order. On non-random devices, notably magnetic tape, the

inversions of writes can be disastrous. The problem with magnetic

1938 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



tapes is "cured" by allowing only one outstanding write request per

drive.

3.2 Character I/O system

The character I/O system consists of all devices that do not fall

into the block I/O model. This includes the "classical" character

devices such as communications lines, paper tape, and line printers.

It also includes magnetic tape and disks when they are not used in a

stereotyped way, for example, 80-byte physical records on tape and

track-at-a-time disk copies. In short, the character I/O interface

means "everything other than block." I/O requests from the user

are sent to the device driver essentially unaltered. The implementa-

tion of these requests is, of course, up to the device driver. There

are guidelines and conventions to help the implementation of certain

types of device drivers.

3.2.1 Disk drivers

Disk drivers are implemented with a queue of transaction records.

Each record holds a read/write flag, a primary memory address, a

secondary memory address, and a transfer byte count. Swapping is

accomplished by passing such a record to the swapping device driver.

The block I/O interface is implemented by passing such records with

requests to fill and empty system buffers. The character I/O inter-

face to the disk drivers create a transaction record that points

directly into the user area. The routine that creates this record also

insures that the user is not swapped during this I/O transaction.

Thus by implementing the general disk driver, it is possible to use

the disk as a block device, a character device, and a swap device.

The only really disk-specific code in normal disk drivers is the pre-

sort of transactions to minimize latency for a particular device, and

the actual issuing of the I/O request.

3.2.2 Character lists

Real character-oriented devices may be implemented using the

common code to handle character lists. A character list is a queue

of characters. One routine puts a character on a queue. Another

gets a character from a queue. It is also possible to ask how many

characters are currently on a queue. Storage for all queues in the

system comes from a single common pool. Putting a character on a

UNIX IMPLEMENTATION 1939



queue will allocate space from the common pool and link the charac-

ter onto the data structure defining the queue. Getting a character

from a queue returns the corresponding space to the pool.

A typical character-output device (paper tape punch, for example)

is implemented by passing characters from the user onto a character

queue until some maximum number of characters is on the queue.

The I/O is prodded to start as soon as there is anything on the

queue and, once started, it is sustained by hardware completion

interrupts. Each time there is a completion interrupt, the driver gets

the next character from the queue and sends it to the hardware.

The number of characters on the queue is checked and, as the count

falls through some intermediate level, an event (the queue address)

is signaled. The process that is passing characters from the user to

the queue can be waiting on the event, and refill the queue to its

maximum when the event occurs.

A typical character input device (for example, a paper tape reader)

is handled in a very similar manner.

Another class of character devices is the terminals. A terminal is

represented by three character queues. There are two input queues

(raw and canonical) and an output queue. Characters going to the

output of a terminal are handled by common code exactly as

described above. The main difference is that there is also code to

interpret the output stream as ASCII characters and to perform some
translations, e.g., escapes for deficient terminals. Another common
aspect of terminals is code to insert real-time delay after certain con-

trol characters.

Input on terminals is a little different. Characters are collected

from the terminal and placed on a raw input queue. Some device-

dependent code conversion and escape interpretation is handled

here. When a line is complete in the raw queue, an event is sig-

naled. The code catching this signal then copies a line from the raw

queue to a canonical queue performing the character erase and line

kill editing. User read requests on terminals can be directed at

either the raw or canonical queues.

3.2.3 Other character devices

Finally, there are devices that fit no general category. These

devices are set up as character I/O drivers. An example is a driver

that reads and writes unmapped primary memory as an I/O device.

Some devices are too fast to be treated a character at time, but do

not fit the disk I/O mold. Examples are fast communications lines

1940 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



and fast line printers. These devices either have their own buffers

or "borrow" block I/O buffers for a while and then give them back.

IV. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes.

No other structure of files is implied by the system. Files are

attached anywhere (and possibly multiply) onto a hierarchy of direc-

tories. Directories are simply files that users cannot write. For a

further discussion of the external view of files and directories, see

Ref. 4.

The UNIX file system is a disk data structure accessed completely

through the block I/O system. As stated before, the canonical view

of a "disk" is a randomly addressable array of 512-byte blocks. A
file system breaks the disk into four self-identifying regions. The

first block (address 0) is unused by the file system. It is left aside

for booting procedures. The second block (address 1) contains the

so-called "super-block." This block, among other things, contains

the size of the disk and the boundaries of the other regions. Next

comes the i-list, a list of file definitions. Each file definition is a 64-

byte structure, called an i-node. The offset of a particular i-node

within the i-list is called its i-number. The combination of device

name (major and minor numbers) and i-number serves to uniquely

name a particular file. After the i-list, and to the end of the disk,

come free storage blocks that are available for the contents of files.

The free space on a disk is maintained by a linked list of available

disk blocks. Every block in this chain contains a disk address of the

next block in the chain. The remaining space contains the address

of up to 50 disk blocks that are also free. Thus with one I/O opera-

tion, the system obtains 50 free blocks and a pointer where to find

more. The disk allocation algorithms are very straightforward.

Since all allocation is in fixed-size blocks and there is strict account-

ing of space, there is no need to compact or garbage collect. How-

ever, as disk space becomes dispersed, latency gradually increases.

Some installations choose to occasionally compact disk space to

reduce latency.

An i-node contains 13 disk addresses. The first 10 of these

addresses point directly at the first 10 blocks of a file. If a file is

larger than 10 blocks (5,120 bytes), then the eleventh address points

at a block that contains the addresses of the next 128 blocks of the

file. If the file is still larger than this (70,656 bytes), then the

twelfth block points at up to 128 blocks, each pointing to 128 blocks

UNIX IMPLEMENTATION 1941



of the file. Files yet larger (8,459,264 bytes) use the thirteenth

address for a "triple indirect" address. The algorithm ends here

with the maximum file size of 1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure

simply by adding a new type of file, the directory. A directory is

accessed exactly as an ordinary file. It contains 16-byte entries con-

sisting of a 14-byte name and an i-number. The root of the hierar-

chy is at a known i-number (viz., 2). The file system structure

allows an arbitrary, directed graph of directories with regular files

linked in at arbitrary places in this graph. In fact, very early UNIX
systems used such a structure. Administration of such a structure

became so chaotic that later systems were restricted to a directory

tree. Even now, with regular files linked multiply- into arbitrary

places in the tree, accounting for space has become a problem. It

may become necessary to restrict the entire structure to a tree, and
allow a new form of linking that is subservient to the tree structure.

The file system allows easy creation, easy removal, easy random
accessing, and very easy space allocation. With most physical

addresses confined to a small contiguous section of disk, it is also

easy to dump, restore, and check the consistency of the file system.

Large files suffer from indirect addressing, but the cache prevents

most of the implied physical I/O without adding much execution.

The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files con-

taining 130M bytes of data-file content. The overhead (i-node,

indirect blocks, and last block breakage) is about 11.5M bytes. The
directory structure to support these files has about 1,500 directories

containing 0.6M bytes of directory content and about 0.5M bytes of

overhead in accessing the directories. Added up any way, this

comes out to less than a 10 percent overhead for actual stored data.

Most systems have this much overhead in padded trailing blanks

alone.

4.1 File system implementation

Because the i-node defines a file, the implementation of the file

system centers around access to the i-node. The system maintains a

table of all active i-nodes. As a new file is accessed, the system
locates the corresponding i-node, allocates an i-node table entry, and
reads the i-node into primary memory. As in the buffer cache, the

table entry is considered to be the current version of the i-node.

Modifications to the i-node are made to the table entry. When the

1 942 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



last access to the i-node goes away, the table entry is copied back to

the secondary store i-list and the table entry is freed.

All I/O operations on files are carried out with the aid of the

corresponding i-node table entry. The accessing of a file is a

straightforward implementation of the algorithms mentioned previ-

ously. The user is not aware of i-nodes and i-numbers. References

to the file system are made in terms of path names of the directory

tree. Converting a path name into an i-node table entry is also

straightforward. Starting at some known i-node (the root or the

current directory of some process), the next component of the path

name is searched by reading the directory. This gives an i-number

and an implied device (that of the directory). Thus the next i-node

table entry can be accessed. If that was the last component of the

path name, then this i-node is the result. If not, this i-node is the

directory needed to look up the next component of the path name,

and the algorithm is repeated.

The user process accesses the file system with certain primitives.

The most common of these are open, create, read, write, seek,

and close. The data structures maintained are shown in Fig. 2. In

the system data segment associated with a user, there is room for

some (usually between 10 and 50) open files. This open file table

consists of pointers that can be used to access corresponding i-node

table entries. Associated with each of these open files is a current

I/O pointer. This is a byte offset of the next read/write operation

on the file. The system treats each read/write request as random
with an implied seek to the I/O pointer. The user usually thinks of

the file as sequential with the I/O pointer automatically counting the

number of bytes that have been read/written from the file. The
user may, of course, perform random I/O by setting the I/O pointer

before reads/writes.

With file sharing, it is necessary to allow related processes to share

a common I/O pointer and yet have separate I/O pointers for

independent processes that access the same file. With these two

conditions, the I/O pointer cannot reside in the i-node table nor can

it reside in the list of open files for the process. A new table (the

open file table) was invented for the sole purpose of holding the I/O

pointer. Processes that share the same open file (the result of

forks) share a common open file table entry. A separate open of the

same file will only share the i-node table entry, but will have distinct

open file table entries.

The main file system primitives are implemented as follows,

open converts a file system path name into an i-node table entry. A

UNIX IMPLEMENTATION 1943



PER-USER OPEN
FILE TABLE

Ar

Ar

OPEN FILE
TABLE

Ar

SWAPPED
PER/USER

ACTIVE l-NODE
TABLE

Ar

Ar

V

Ar

FILE
MAPPING
ALGORITHMS

RESIDENT
PER/SYSTEM

SECONDARY
STORAGE
PER/
FILE SYSTEM

Fig. 2— File system data structure.

pointer to the i-node table entry is placed in a newly created open

file table entry. A pointer to the file table entry is placed in the sys-

tem data segment for the process, create first creates a new i-node

entry, writes the i-number into a directory, and then builds the same

structure as for an open, read and write just access the i-node

entry as described above, seek simply manipulates the I/O pointer.

No physical seeking is done, close just frees the structures built by

open and create. Reference counts are kept on the open file table

entries and the i-node table entries to free these structures after the

last reference goes away, unlink simply decrements the count of

the number of directories pointing at the given i-node. When the

last reference to an i-node table entry goes away, if the i-node has

no directories pointing to it, then the file is removed and the i-node

is freed. This delayed removal of files prevents problems arising

from removing active files. A file may be removed while still open.

The resulting unnamed file vanishes when the file is closed. This is

a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe.

1 944 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



Implementation of pipes consists of implied seeks before each read

or write in order to implement first-in-first-out. There are also

checks and synchronization to prevent the writer from grossly

outproducing the reader and to prevent the reader from overtaking

the writer.

4.2 Mounted file systems

The file system of a UNIX system starts with some designated

block device formatted as described above to contain a hierarchy.

The root of this structure is the root of the UNIX file system. A
second formatted block device may be mounted at any leaf of the

current hierarchy. This logically extends the current hierarchy. The

implementation of mounting is trivial. A mount table is maintained

containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the

new i-node is a designated leaf. If it is, the i-node of the root of the

block device replaces it.

Allocation of space for a file is taken from the free pool on the

device on which the file lives. Thus a file system consisting of many

mounted devices does not have a common pool of free secondary

storage space. This separation of space on different devices is neces-

sary to allow easy unmounting of a device.

4.3 Other system functions

There are some other things that the system does for the user—

a

little accounting, a little tracing/debugging, and a little access protec-

tion. Most of these things are not very well developed because our

use of the system in computing science research does not need

them. There are some features that are missed in some applica-

tions, for example, better inter-process communication.

The UNIX kernel is an I/O multiplexer more than a complete

operating system. This is as it should be. Because of this outlook,

many features are found in most other operating systems that are

missing from the UNIX kernel. For example, the UNIX kernel does

not support file access methods, file disposition, file formats, file

maximum size, spooling, command language, logical records, physi-

cal records, assignment of logical file names, logical file names,

more than one character set, an operator's console, an operator,

log-in, or log-out. Many of these things are symptoms rather than

features. Many of these things are implemented in user software

UNIX IMPLEMENTATION 1945



using the kernel as a tool. A good example of this is the command
language. 5 Each user may have his own command language.

Maintenance of such code is as easy as maintaining user code. The
idea of implementing "system" code with general user primitives

comes directly from multics.6

REFERENCES
1. R. E. Griswold and D. R. Hanson, "An Overview of SL5," sigplan Notices, 12

(April 1977), pp. 40-50.

2. E. W. Dijkstra, "Cooperating Sequential Processes," in Programming Languages, ed.

F. Genuys, New York: Academic Press (1968), pp. 43-112.

3. J. A. Hawley and W. B. Meyer, "munix, A Multiprocessing Version of unix," M.S.
Thesis, Naval Postgraduate School, Monterey, Cal. (1975).

4. D. M. Ritchie and K. Thompson, "The unix Time-Sharing System," B.S.T.J., this

issue, pp. 1905-1929.

5. S. R. Bourne, "unix Time-Sharing System: The unix Shell," B.S.T.J., this issue,

pp. 1971-1990.
6. E. I. Organick, The multics System, Cambridge, Mass.: M.I.T. Press, 1972.

1 946 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978


