
Copyright © 1978 American Telephone and Telegraph Company

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978

Printed in U.S.A.

UNIX Time-Sharing System:

The UNIX Shell

By S. R. BOURNE
(Manuscript received January 30, 1978)

The UNIX* shell is a command programming language that provides an

interface to the UNIX operating system. It contains several mechanisms

found in algorithmic languages such as control-flow primitives, variables,

and parameter passing. Constructs such as while, if, for, and case are

available. Two-way communication is possible between the shell and

commands. String-valued parameters, typically file names or flags, may

be passed to a command. A return code is set by commands and may be

used to determine the flow of control, and the standard output from a

command may be used as input to the shell. The shell can modify the

environment in which commands run. Input and output can be

redirected and processes that communicate through "pipes" can be

invoked. Commands are found by searching directories in the file system

in a sequence that can be defined by the user.

I. INTRODUCTION

The UNIX shell! is both a programming language and a command

language. As a programming language, it contains control-flow

primitives and string-valued variables. As a command language, it

provides a user interface to the process-related facilities of the UNIX

operating system. The design of the shell is based in part on the

• unix is a trademark of Bell Laboratories.

t This term (shell) seems to have first appeared in the multics system (Ret. I). It

is, however, not universal; other terms include command interpreter, command

language.

1971

original unix shell2 and the pwb/unix shell, 3 ' 4 some features having

been taken from both. Similarities also exist with the command
interpreters of the Cambridge Multiple Access System5 and of

ctss. 6 The language described here differs from its predecessors in

that the control-flow notations are more powerful and are under-

stood by the shell itself. However, the notation for simple com-
mands and for parameter passing and substitution is similar in all

these languages.

The shell executes commands that are read either from a terminal

or from a file. The design of the shell must therefore take into

account both interactive and noninteractive use. Except in some
minor respects, the behavior of the shell is independent of its input

source.

II. NOTATION

Simple commands are written as sequences of "words" separated

by blanks. The first word is the name of the command to be exe-

cuted. Any remaining words are passed as arguments to the

invoked command. For example, the command

Is -I

prints a list of the file names in the current directory. The argument

—I tells Is to print the date of last use, the size, and status informa-

tion for each file.

Commands are similar to procedure calls in languages such as

Algol 68 or pl/i. The notation is different in two respects. First,

although the arguments are arbitrary strings, in most cases they

need not be enclosed in quotes. Second, there are no parentheses

enclosing the list of arguments nor commas separating them. Com-
mand languages tend not to have the extensive expression syntax

found in algorithmic languages. Their primary purpose is to issue

commands; it is therefore important that the notation be free from
superfluous characters.

To execute a command, the shell normally creates a new process

and waits for it to finish. Both these operations are primitives avail-

able in the UNIX operating system. A command may be run without

waiting for it to finish using the postfix operator & . For example,

print file &

calls the print command with argument file and runs it in the

1972 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

background. The & is a metacharacter interpreted by the shell and

is not passed as an argument to print.

Associated with each process, UNIX maintains a set of file descrip-

tors numbered 0,1,... that are used in all input-output transactions

between processes and the operating system. File descriptor is

termed the standard input and file descriptor 1 the standard output.

Most commands produce their output on the standard output that is

initially (following login) connected to a terminal. This output may

be redirected for the duration of a command, as in

Is -I >file

The notation >file is interpreted by the shell and is not passed as

an argument to Is. If the file does not exist, the shell creates it;

otherwise, the contents of the file are replaced with the output from

the command. To append to a file, the notation

Is -I »file

is provided. Similarly, the standard input may be taken from a file

by writing, for example,

wc <file

wc prints the number of characters, words, and lines on the stan-

dard input.

The standard output of one command may be connected to the

standard input of another by writing the "pipe" operator, indicated

by | , as in

Is —I | wc

Two commands connected in this way constitute a "pipeline," and

the overall effect is the same as

Is -I >file

wc < file

except that no file is used. Instead, the two processes are connected

by a pipe that is created by an operating system call. Pipes are uni-

directional; synchronization is achieved by halting wc when there is

nothing to read and halting Is when the pipe is full. This matter is

dealt with by UNIX, not the shell.

A filter is a command that reads its input, transforms it in some

way, and prints the result as output. One such filter, grep, selects

from its input those lines that contain some specified string. For

example,

THE UNIX SHELL 1973

Is
I

grep old

prints those file names from the current directory that contain the

string old.

A pipeline may consist of more than two commands, the input of

each being connected to the output of its predecessor. For example,

Is | grep old | wc

When a command finishes execution it returns an exit status

(return code). Conventionally, a zero exit status means that the

command succeeded; nonzero means failure. This Boolean value

may be tested using the if and while constructs provided by the

shell.

The general form of the conditional branch is

if command-list

then command-list

else command-list

fi

The else part is optional. A command-list is a sequence of com-
mands separated by semicolons or newlines and is evaluated from

left to right. The value tested by if is that of the last simple-

command in the command-list following if. Since this construction is

bracketed by if and fi, it may be used unambiguously in any position

that a simple command may be used. This is true of all the

control-flow constructions in the shell. Furthermore, in the case of

if there is no dangling else ambiguity. Apart from considerations of

language design, this is important for interactive use. An Algol 60

style if then else, where the else part is optional, requires look-

ahead to see whether the else part is present. In this case, the shell

would be unable to determine that the if construct was ended until

the next command was read.

The McCarthy "andf" and "orf operators are also provided for

testing the success of a command and are written && and
| | respec-

tively.

command, && command ? (1)

executes command 2 only if command, succeeds. It is equivalent

to

if command,

then command 2

fi

1 974 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

Conversely,

command,
| | command 2 (2)

executes command 2 only if command, fails. The value returned

by these constructions is the value of the last command executed.

Thus (1) returns true iff both command, and command
2
succeed,

whereas (2) returns true iff either command, or command 2

succeeds.

The while loop has a form similar to if.

while command-list,

do command-list,

done

command-list, is executed and its value tested each time around the

loop. This provides a notation for a break in the middle of a loop,

as in

while a; b

do c

done

First a is executed, then b. If b returns false, then the loop exits;

otherwise, c is executed and the loop resumes at a. Although this

deals with many loop breaks, break and continue are also available.

Both take an optional integer argument specifying how many levels

of loop to break from or at which level to continue, the default

being one.

if and while test the value returned by a command. The case

and for constructs provide for data-driven branching and looping.

The case construct is a multi-way branch that has the general form

case word in

pattern) command-list ;;

esac

The shell attempts to match word with each pattern, in the order in

which the patterns appear. If a match is found, the associated

command-list is executed and execution of the case is complete.

Patterns are specified using the following metacharacters.

* Matches any string including the null string.

? Matches any single character.

THE UNIX SHELL 1975

[...] Matches any of the enclosed characters. A pair of

characters separated by a minus matches any char-

acter lexically between the pair.

For example, *.c will match any string ending with .c . Alternatives

are separated by | , as in

case ... in

x|y) ...

which, for single characters, is equivalent to

case ... in

[xy]) ...

There is no special notation for the default case, since it may be

written as

case ... in

*) ...

esac

Since it is difficult to determine the equivalence of patterns, no

check is made to ensure that only one pattern matches the case
word. This could lead to obscure bugs, although in practice it

appears not to present a problem.

The for loop has the general form

for name in word, word2 ...

do command-list

done

and executes the command-list once for each word following in.

Each time around the loop the shell variable (q.v.) name is set to

the next word.

III. SHELL PROCEDURES

The shell may be used to read and execute commands contained

in a file. For example,

sh file arg
1
arg 2 ...

calls the shell to read commands from file. Such a file is called a

"shell procedure." Arguments supplied with the call are referred to

within the shell procedure using the positional parameters $1,

1976 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

$2, For example, if the file wg contains

who
|
grep $1

then

is equivalent to

sh wg fred

who
|
grep fred

unix files have three independent attributes, read, write, and exe-

cute. If the file wg is executable, then

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchange-

ably.

A frequent use of shell procedures is to loop through the argu-

ments ($1,$2,...) executing commands once for each argument.

An example of such a procedure is tel that searches the file

/usr/lib/telnos containing lines of the form

fred mh0123
bert mh0789

The text of tel is

for i

do grep $i < /usr/lib/telnos; done

The default in list for a for loop is the positional parameters. The

command

tel fred bert

prints those lines in /usr/lib/telnos that contain the string fred fol-

lowed by those lines that contain bert.

Shell procedures can be used to tailor the command environment

to the taste and needs of an individual or group. Since procedures

are text files requiring no compilation, they are easy to create and

maintain. Debugging is also assisted by the ability to try out parts of

a procedure at a terminal. To further assist debugging, the shell

THE UNIX SHELL 1977

provides two tracing mechanisms. If a procedure is invoked with

the —v flag, as in

sh —v proc

then the shell will print the lines of proc as they are read. This is

useful when checking procedures for syntactic errors, particularly in

conjunction with the —n flag which suppresses command execution.

An execution trace is specified by the —x flag and causes each com-

mand to be printed as it is executed. The —x flag is more useful

than —v when errors in the flow of control are suspected.

During the execution of a shell procedure, the standard input and

output are left unchanged. (In earlier versions of the UNIX shell the

text of the procedure itself was the standard input.) Thus shell pro-

cedures can be used naturally as filters. However, commands some-

times require in-line data to be available to them. A special input

redirection notation "«" is used to achieve this effect. For exam-

ple, the UNIX editor takes its commands from the standard input.

At a terminal,

ed file

will call the editor and then read editing requests from the terminal.

Within a shell procedure this would be written

ed file «!
editing requests

The lines between « ! and ! are called a here document; they are

read by the shell and made available as the standard input. The
string ! is arbitrary, the document being terminated by a line that

consists of the string following « . There are a number of advan-

tages to making here documents explicitly visible. First, the number
of lines read from the shell procedure is under the control of the

procedure writer, enabling a procedure to be understood without

having to know what commands such as ed do. Further, since the

shell is the first to see such input, parameter substitution can,

optionally, be applied to the text of the document.

IV. SHELL VARIABLES

The shell provides string-valued variables that may be used both

within shell programs and, interactively, as abbreviations for

1978 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

frequently used strings. Variable names begin with a letter and con-

sist of letters, digits, and underscores.

Shell variables may be given values when a shell procedure is

invoked. An argument to a shell procedure of the form

name= value causes value to be assigned to name before execution of

the procedure begins. The value of name in the invoking shell is

not affected. Such names are sometimes called keyword parameters.

Keyword parameters may also be exported from a procedure by

saying, for example,

export user box

Modification of such variables within the called procedure does not

affect the values in the calling procedure. (It is generally true of a

UNIX process that it may not modify the environment of its caller

without explicit request on the part of that caller. Files and shared

file descriptors are the exceptions to this rule.)

A name whose value is intended to remain constant throughout a

procedure may be declared readonly. The form of this command is

the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

Within a shell procedure, shell variables are set by writing, for

example,

user=fred

The value of a variable may be substituted by preceding its name
with $; for example,

echo $user

will echo fred. (echo is a standard unix command that prints its

arguments, separated by blanks.) The general notation for parameter

(or variable) substitution is

${name}

and is used, for example, when the parameter name is followed by a

letter or digit. If a shell parameter is not set, then the null string is

substituted for it. Alternatively, a default string may be given, as in

echo ${d— .}

which will echo the value of d if it is set and "." otherwise. Substi-

tutions may be nested, so that, for example,

THE UNIX SHELL 1979

echo ${d-$l}

will echo the value of d if it is set and the value (if any) of $1 oth-

erwise. A variable may be assigned a default value using the nota-

tion

${d=.}

which substitutes the same string as

${d-.}

except that, if d were not previously set, then it will be set to the

string "."
. (The notation ${... = ...} is not available for positional

parameters.)

In cases when a parameter is required to be set, the notation

${d? message]

will substitute the value of the variable d if it has one, otherwise

message is printed by the shell and execution of the shell procedure

is abandoned. If message is absent then a standard message is

printed. A shell procedure that requires some parameters to be set

might start as follows.

: ${user?} ${acct?} ${bin?}

A colon (:) is a command built in to the shell that does nothing

once its arguments have been evaluated. In this example, if any of

the variables user, acct or bin are not set, then the shell will aban-

don execution of the procedure.

The following variables have a special meaning to the shell.

$? The exit status (return code) of the last command exe-

cuted as a decimal string.

$# The number of positional parameters as a decimal

string.

$$ The UNIX process number of this shell (in decimal).

Since process numbers are unique among all existing

processes, this string is typically used to generate

unique temporary file names (unix has no genuine

temporary files)

.

$! The process number of the last process initiated in the

background.

$— The current shell flags.

The following variables are used, but not set, by the shell.

1980 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

Typically, these variables are set in a profile which is executed when

a user logs on to UNIX.

$mail When used interactively, the shell looks at the file

specified by this variable before it issues a prompt. If

this file has been modified since it was last examined,

the shell prints the message you have mail and then

prompts for the next command.

$home The default argument {home directory) for the cd com-

mand. The current directory is used to resolve file

name references that do not begin with a /, and is

changed using the cd command.

$path A list of directories that contain commands (the search

path). Each time a command is executed by the shell,

a list of directories is searched for an executable file. If

$path is not set, then the current directory, /bin, and

/usr/bin are searched by default. Otherwise $path

consists of directory names separated by : . For exam-

ple,

PATH= :/usr/fred/bin :/bin:/usr/bin

specifies that the current directory (the null string

before the first :), /usr/fred/bin, /bin and /usr/bin,

are to be searched, in that order. In this way, indivi-

dual users can have their own "private" commands

accessible independently of the current directory. If the

command name contains a /, then this directory search

mechanism is not used; a single attempt is made to find

the command.

V. COMMAND SUBSTITUTION

The standard output from a command enclosed in grave accents

(\ .
.*) can be substituted in a similar way to parameters. For exam-

ple, the command pwd prints on its standard output the name of

the current directory. If the current directory is /usr/fred/bin then

d = 'pwd*

is equivalent to

d = /usr/fred/bin

The entire string between grave accents is the command to be

THE UNIX SHELL 1981

executed and is replaced with the output from that command. This

mechanism allows string-processing commands to be used within

shell procedures. The shell itself does not provide any built-in

string processing other than concatenation and pattern matching.

Command substitution occurs in all contexts where parameter sub-

stitution occurs and the treatment of the resulting text is the same
in both cases.

VI. FILE NAME GENERATION

The shell provides a mechanism for generating a list of file names
that match a pattern. The specification of patterns is the same as

that used by the case construct. For example,

Is -I *.c

generates, as arguments to Is, all file names in the current directory

that end in .c

.

[a-zl*

matches all names in the current directory beginning with one of the

letters a through z.

/usr/srb/test/?

matches all file names in the directory /usr/srb/test consisting of a

single character. If no file name is found that matches the pattern,

then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names
according to some pattern. It may also be used to find files. For

example,

echo /usr/srb/*/core

finds and prints the names of all core files in subdirectories of

/usr/srb. This last feature can be expensive, requiring a scan of all

subdirectories of /usr/srb.

There is one exception to the general rules given for patterns.

The character "." at the start of a file name must be explicitly

matched.

echo *

will therefore echo all file names in the current directory not begin-

ning with ".".

1982 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

echo .*

will echo all those file names that begin with "."
. This avoids inad-

vertent matching of the names "." and ".." which, conventionally,

mean "the current directory" and "the parent directory" respec-

tively.

VII. EVALUATION AND QUOTING

The shell is a macro processor that provides parameter substitu-

tion, command substitution, and file name generation for the argu-

ments to commands. This section discusses the order in which sub-

stitutions occur and the effects of the various quoting mechanisms.

Commands are initially parsed according to the grammar given in

Appendix A. Before a command is executed, the following evalua-

tions occur.

Parameter substitution, e.g., $user.

Command substitution, e.g., *pwd\

The shell does not rescan substituted strings. For example, if the

value of the variable X is the string $x, then

echo $X

will echo $x.

After these substitutions have occurred, the resulting characters

are broken into words (blank interpretation); the null string is not

regarded as a word unless it is quoted. For example,

echo

will pass on the null string as the first argument to echo, whereas

echo Snull

will call echo with no arguments if the variable null is not set or set

to the null string.

Each word is then scanned for the file pattern characters *, ?, and

[...], and an alphabetical list of file names is generated to replace

the word. Each such file name is a separate argument.

Metacharacters such as < > * ? | (Appendix B has a complete

list) have a special meaning to the shell. Any character preceded by

a is quoted and loses its special meaning, if any. The \ is elided so

that

echo \?\\

THE UNIX SHELL 1983

will echo ?\ . To allow long strings to be continued over more than

one line, the sequence \newline is ignored.

\ is convenient for quoting single characters. When more than

one character needs quoting, the above mechanism is clumsy and

error-prone. A string of characters may be quoted by enclosing

(part of) the string between single quotes, as in

echo '*'

The quoted string may not contain a single quote.

A third quoting mechanism using double quotes prevents

interpretation of some but not all metacharacters. Within double

quotes, parameter and command substitution occurs, but file name
generation and the interpretation of blanks does not. The following

characters have a special meaning within double quotes and may be

quoted using \

.

$ parameter substitution

command substitution
"

ends the quoted string

\ quotes the special characters $ * " \

For example,

echo "$x"

will pass the value of the variable x to echo, whereas

echo '$x'

will pass the string $x to echo.

In cases where more than one evaluation of a string is required,

the built-in command eval may be used, eval reads its arguments

(which have therefore been evaluated once) and executes the result-

ing command (s). For example, if the variable X has the value $x,

and if x has the value pqr then

eval echo $X

will echo the string pqr.

VIII. ERROR AND FAULT HANDLING

The treatment of errors detected by the shell depends on the type

of error and on whether the shell is being used interactively. An
interactive shell is one whose input and output are connected to a

1984 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

terminal. Execution of a command may fail for any of the following

reasons.

(/') Input output redirection may fail, for example, if a file does

not exist or cannot be created. In this case, the command is

not executed.

(//') The command itself does not exist or is not executable.

(///') The command runs and terminates abnormally, for example,

with a "memory fault."

(/v) The command terminates normally but returns a nonzero exit

status.

In all of these cases, the shell will go on to execute the next com-

mand. Except for the last case, an error message will be printed by

the shell.

All remaining errors cause the shell to exit from a command pro-

cedure. An interactive shell will return to read another command
from the terminal. Such errors include the following.

(/) Syntax errors; e.g., if ... then ... done.

(//) A signal such as terminal interrupt. The shell waits for the

current command, if any, to finish execution and then either

exits or returns to the terminal.

(///) Failure of any of the built-in commands such as cd.

The shell flag —e causes the shell to terminate if any error is

detected.

Shell procedures normally terminate when an interrupt is received

from the terminal. Such an interrupt is communicated to a UNIX

process as a signal. If some cleaning-up is required, such as remov-

ing temporary files, the built-in command trap is used. For exam-

ple,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for terminal interrupt (signal 2) and, if this interrupt is

received, will execute the commands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a

shell procedure. The exit is required in this example; otherwise,

after the trap has been taken, the shell would resume executing the

procedure at the place where it was interrupted.

UNIX signals can be handled by a process in one of three ways.

They can be ignored, in which case the signal is never sent to the

THE UNIX SHELL 1985

process; they can be caught, in which case the process must decide

what to do; lastly, they can be left to cause termination of the pro-

cess without it having to take any further action. If a signal is being

ignored on entry to the shell procedure, for example, by invoking

the procedure in the background, then trap commands (and the sig-

nal) are ignored.

A shell procedure may, itself, elect to ignore signals by specifying

the null string as the argument to trap. A trap may be reset by say-

ing, for example,

trap 2

which resets the trap for signal 2 to its default value (which is to

exit).

The following procedure scan is an example of the use of trap

without an exit in the trap command, scan takes each directory in

the current directory, prompts with its name, and then executes the

command typed at the terminal. Interrupts are ignored while exe-

cuting the requested commands but cause termination when scan is

waiting for input.

d='pwd'

for i in *

do if test -d $d/$i

then cd $d/$i

while echo "$i:"

trap exit 2

read x

do trap : 2; eval $x; done

fi

done

The command

read x

is built in to the shell and reads the next line from the standard

input and assigns it to the variable x . The command

test — d arg

returns true if arg is a directory and false otherwise.

IX. COMMAND EXECUTION

To execute a command, the shell first creates a new process using

1986 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

the system call fork. The execution environment for the command

includes input, output, and the states of signals, and is established in

the created process before the command is executed. The built-in

command exec is used in the rare cases when no fork is required.

The environment for a command run in the background, such as

list *.c | ipr &

is modified in two ways. First, the default standard input for such a

command is the empty file /dev/null. This prevents two processes

(the shell and the command), that are running in parallel, from try-

ing to read the same input. Chaos would ensue if this were not the

case.

ed file &

would allow both the editor and the shell to read from the same

input at the same time.

The other modification to the environment of a background com-

mand is to turn off the quit and interrupt signals so that they are

ignored by the command. This allows these signals to be used at the

terminal without causing background commands to terminate.

X. ACKNOWLEDGMENTS

I would like to thank Dennis Ritchie and John Mashey for many

discussions during the design of the shell. I am also grateful to the

members of the Computing Science Research Center for their com-

ments on drafts of this document.

APPENDIX A

Grammar

item: word

input-output

simple-command: item

simple-command item

command: simple-command

(command-list

)

[command-list

}

THE UNIX SHELL 1987

pipeline:

andor:

command-list:

input-output:

case-part:

pattern:

else-part:

empty:

word:

name:

digit:

1988 THE BELL

for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part . . . esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline

andor && pipeline

andor
\ \

pipeline

andor

command-list
;

command-list &
command-list ; 0«</o/-

command-list & a«</or

> word» word

< word« word

pattern) command-list ;;

word

pattern
| word

el if command-list then command-list else-part

else command-list

empty

a sequence of non-blank characters

a sequence of letters, digits or underscores

starting with a letter

01 23456789

SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

APPENDIX B

Metacharacters and Reserved Words

(/) Syntactic

1
pipe symbol

&& "andf" symbol

II "orf" symbol

>
command separator

j j
case delimiter

& background commands

() command grouping

< input redirection« input from a here document

> output creation» output append

(/'/) Patterns

* matches any character (s) including none

? matches any single character

[...] matches any of the enclosed characters

(//*/) Substitution

${...} substitution of shell variables

substitution of command output

(iv) Quoting

quotes the next character

quotes the enclosed characters except for

quotes the enclosed characters except

for $ ' \
"

(v) Reserved words

if then else elif fi

case in esac
for while until do done

THE UNIX SHELL 1989

REFERENCES

1. E. I. Organick, The multics System, Cambridge, Mass.: M.I.T. Press, 1972.
2. K. Thompson, "The unix Command Language," in Structured Programming—

Infotech State of the Art Report, Nicholson House, Maidenhead, Berkshire,
England: Infotech International Ltd. (March 1975), pp. 375-384.

3. J. R. Mashey, "Using a Command Language as a High-Level Programming
Language," Proc. 2nd Int. Conf. on Software Engineering (October 13-15,

1976), pp. 169-176.

4. T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Work-
bench," Proc. 2nd Int. Conf. on Software Engineering (October 13-15, 1976),

pp. 164-168.

5. D. F. Hartley (Ed.), The Cambridge Multiple Access System — Users Reference
Manual, Cambridge, England: University Mathematical Laboratory, 1968.

6. P. A. Crisman, Ed., The Compatible Time-Sharing System, Cambridge, Mass.: M.I.T.
Press, 1965.

1990 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

